
Cache Optimization for Mobile Devices Running Multimedia

Applications

Abu Asaduzzaman, Imad Mahgoub, Praveen Sanigepalli, Hari Kalva, Ravi Shankar, and

Borko Furht

Department of Computer Science & Engineering

Florida Atlantic University

777 Glades Road, Boca Raton, Florida 33431, USA

Tel: (561) 297-3855, Fax: (561) 297-2800

aasaduzz@fau.edu, imad@cse.fau.edu, spraveen@fau.edu, hari@cse.fau.edu,

ravi@cse.fau.edu, and borko@cse.fau.edu

Abstract

The popularity of mobile/wireless embedded
systems running multimedia applications is growing.

MPEG4 is an important and demanding multimedia

application. With improved CPU, memory subsystem
deficiency is the major barrier to improving the system

performance. Studies show that there is sufficient reuse of

values for caching to significantly reduce the raw
required memory bandwidth for video data. Decoding

MPEG4 video data in software generates many times

more cache-memory traffic than required. Proper
understanding of the decoding algorithm and the

composition of its data set is obvious to improve the
performance of such a system. The focus of this paper is

to enhance MPEG4 decoding performance through cache

optimization of a mobile device. The architecture we
simulate includes a digital signal processor (DSP) to run

the decoding algorithm and a two-level cache system.

Level-1 cache is split into Data (D1) and Instruction (I1)
caches and level-2 (CL2) is a unified cache. We use

Cachegrind and VisualSim simulation tools to optimize

cache size, line size, associativity, and levels of caches for
a wireless device decoding MPEG4 video.

1. Introduction

Due to the growing demands in functionalities

the size and complexity of multimedia application are

increasing. For time critical applications, these systems

must react to system changes and must compute certain

results in real time. To cope with these issues, more

computational power is required in their implementation.

Increased computational power implies more traffic from

CPU to Memory. The bandwidth to off-chip memories is

not increasing as fast as the increase in speed of

computation power, leading to a significant

processor/memory speed gap. An approach to deal with

memory bandwidth bottlenecks is to use cache(s). Cache

is intended to give memory speed approaching that of the

fastest memories in the system. Figure 1 shows the

memory hierarchy with level-1 (CL1) and level-2 (CL2)

caches. Cache improves performance by reducing the data

access time. Data between CPU and cache is transferred

as data object and between cache and main memory as

block [1, 2, 3, 4].

Figure 1: Memory hierarchy; (a) CPU, Main Memory,

and Bus; (b) Processor cache (CL1); (c) CL2; (d) Data

transfer among CPU, Cache, and Main Memory

Multimedia computing has become a practical

reality, and computer architectures are changing in

response. MPEG processing is a significant challenge for

memory subsystems, which have become the primary

performance bottleneck. The high data rate, large sizes,

and distinctive memory access patterns of MPEG exert a

particular strain on caches. While miss rates are

acceptable, generate significant excess cache-memory

traffic. Multimedia applications seriously suffer due to

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

cache inefficiency from dropped frames, blocking, or

other annoying artifacts. For mobile devices, where power

and bandwidth are limited, cache inefficiency can have a

direct cost impact, requiring the use of higher capacity

components that can drive up system cost [5, 6, 7].

The paper is organized as follows. Section 2

discusses related work. Section 3 presents a short

overview of multimedia applications. Section 4 explains

the simulated architecture. Simulation details are

presented in Section 5. In Section 6, the simulation results

are analyzed. Finally, we conclude our work in Section 7.

At the end, VisualSim Block Diagram and Simulation

Cockpit are attached as Appendix A.

2. Related Work

A number of studies have been done on cache

optimization for mobile devices running multimedia

applications. In this section, we include only those that

are very relevant to the work presented in this paper.

A general-purpose computing platform running

MPEG-2 application is studied in [4]. Most of the data

transferred is concentrated on the main system bus. At the

very least, there are two streams of encoded and decoded

video being concurrently transferred in and out of main

memory. Any excess memory traffic generated by cache

inefficiency will further exacerbate this situation. It is

found that there is sufficient reuse of values for caching to

significantly reduce the raw required memory bandwidth

for video data. The addition of a larger second level cache

to a small first level cache can reduce the memory

bandwidth significantly.

The problem related to improving memory

hierarchy performance at system level for multitasking

data intensive application is addressed in [3]. They

propose compiler-like method for intra-task and analytical

method to find a static task execution order for inter-task

data cache misses by using cache partitioning. Due to the

lack of freedom in reordering task execution, this method

can optimize the caches more.

Cache behavior of multimedia and traditional

applications is studied in [4]. The analysis show that

multimedia applications exhibit higher data miss rate and

comparable lower instruction miss rate. The study

indicates larger data cache line sizes than are currently

used would be beneficial in case of multimedia

applications.

In [1] we explore the architecture of a

multiprocessor mobile system running MPEG4

application. We develop a simulation program to evaluate

the system performance in terms of utilization, delay, and

total transactions for various CL1 sizes.

In this work, we focus on the impact of various

cache design parameters namely, cache size, line size,

associativity, and cache levels on the performance of

MPEG4 decoding algorithm running on a single processor

system.

3. Multimedia Applications

Multimedia is a combination of various data

types including audio, graphics, and video. A multimedia

application is one which operates on data to be presented

visually and/or aurally. At its most basic level,

compression is performed when an input video stream is

analyzed and information that is less significant to the

viewer is discarded. Each event is then assigned a code -

commonly occurring events are assigned few bits and rare

events will have more bits. The transmitter encodes and

transmits the encoded video streams; the receiver decodes

the encoded video streams and plays them back [9]. This

section is an overview of MPEG4 video algorithm.

Moving Picture Experts Group (MPEG), the

working group within the International Organization for

Standardization (ISO), defined MPEG4, the next-

generation global multimedia standard. MPEG4 delivers

professional-quality audio and video streams over a wide

range of bandwidths, from cell phone to broadband and

beyond. MPEG4 considers both the spatial and temporal

redundancy of video signals to achieve compression.

Video data is broken down into 8 by 8 pixel Blocks and

passed through a discrete cosine transform (DCT). The

resulting spatial frequency coefficients are quantized, run-

length encoded, and then further compressed with an

entropy coding algorithm. To exploit temporal

redundancy, MPEG4 encoding uses motion compensation

with three different types of frames. I (intra) frames

contain a complete image, compressed for spatial

redundancy only. P (predicted) MPEG4 frames are built

from 16 by 16 fragments known as macro-blocks. These

consist primarily of pixels from the closest previous I or P

frame (the reference frame), translated as a group from

their location in the source. This information is stored as a

vector representing the translation, and a DCT-encoded

difference term, requiring far fewer bits than the original

image fragment. B (bidirectional) frames can use the

closest two I or P pictures - one before and one after in

temporal order - as reference frames. Information not

present in reference frames is encoded spatially on a

block-by-block basis. All of data in P and B frames is also

subject to run-length and entropy coding [10].

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

Consider a group of picture (GOP) that has 7

picture frames as shown in Figure 2. For decoding, these

frames must be processed in the non-temporal order,

which is a result of these dependencies. It is important

that for a GOP the encoding, transmission, and decoding

order is the same. Structure (at the encoder) is usually

specified using two parameters, M and N. An I frame is

decoded every N frames and a P frame every M frames,

the rest are B frames with the consideration that the

prediction error does not exceed a certain threshold. In

this example, N = 7 and M = 3.

During MPEG4 encoding, both spatial and

temporal redundancy is considered in order to achieve

compression. Due to the fact that there are dependencies

among frames while decoding encoded video, selection of

right cache parameters may improve cache performance

significantly.

4. Architecture

4.1 Cache Design Parameters

Following cache design parameters are examined

in this work – cache size, line size, associativity, and

cache levels.

Cache size: The first most significant design

parameter is cache size. Cache size is usually increased by

factors of two. For MPEG4 decoding, the cache-memory

traffic is a function of cache size and increasing sizes

show improvement, but may not be significant. Cache

memory has cost and space constraints, so the decision of

how large a cache to implement in a system is critical.

Line size: Sub-block placement can help

decouple the size of cache lines and that of the memory

bus. Low miss rates call for larger lines. Larger lines tend

to provide superior spatial locality, but require more data

to be read and possibly written back on a miss. For this

reason, minimal memory traffic occurs with the smaller

lines.

Figure 2: Sample MPEG4 picture frames

The decoder reads the MPEG data as a stream of

bits. Unique bit patterns (start-codes) mark the division

between different sections of the data. The simplified bit

stream hierarchical structure is shown in Figure 3.

Associativity: Better performance can be

achieved by increasing the level of associativity of

smaller caches. Changing from a direct-mapped cache to

a 2-way set-associative may reduce memory traffic by as

much as 50% for small caches. Set sizes of greater than 4,

however, show minimal benefit across all cache sizes [4].

Multi-level caches: CL2 cache between CL1

and main memory may significantly improve the CPU

and overall performance. In general, addition of CL2

decreases the bus traffic and latency.

4.2 Simulated Architecture

We study cache optimization for a mobile device

running multimedia applications. Our focus is on MPEG4

decoding algorithm. The simulation program is developed

using VisualSim to evaluate the system performance in

terms of utilization and total number of transactions

processed by the different system components for various

cache sizes, line sizes, associativity, and cache levels. We

collect D1, I1, and CL2 references and misses for MPEG4

Figure 3: MPEG bit-stream structure

A Sequence (video clip) consists of groups of

pictures (GOP). A GOP contains at least one I frame

(picture) and typically a number of dependent P and B

frames. Pictures consist of collections of macro-blocks

called slices.

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

application using Cachegrind to drive our simulation

model. The system architecture is shown in Figure 4.

Figure 4: Simulated architecture for mobile devices

decoding MPEG4 video

Digital signal processor (DSP) decodes the encoded video

streams. DSP has CL1 and CL2. CL1 is a split cache for

data (D1) and instruction (I1) caches and CL2 is a unified

cache. We are interested to investigate the impacts of

various CL1 and CL2 sizes on system performance. DSP

and main memory are connected via a shared bus. DMA-

I/O transfers and buffers encoded video data from the

storage to the main memory. DSP decodes and writes the

video streams into the main memory. The CPU reads the

encoded data from and writes the decoded video into the

main memory through its cache hierarchy. This paper

focuses on cache optimization for video decoding and

video playback is not considered.

5. Simulation

5.1 Simulation Tools

In this work, we use two simulation tools –

Cachegrind from Valgrind and VisualSim from Mirabilis

Design [11, 12].

Cachegrind is a simulation package, also known

as a cache profiler [11]. Cachegrind performs detailed

simulation of the D1, I1, and CL2 caches on an x86

machine. Total references, misses, and miss rates for D1,

I1, and CL2 caches can be collected using Cachegrind.

VisualSim is an effective tool to simulate system

level architecture [12]. VisualSim provides block libraries

for various system components including CPU, caches,

bus, and main memory. VisualSim simulation model is

developed by selecting right blocks and making

appropriate connections among them. VisualSim

simulation cockpit provides functionalities to run the

model and to collect simulation results. Detailed

simulation block diagram and simulation cockpit are

shown in Appendix A.

5.2 MPEG4 Workload

The workload defines all possible scenarios and

environmental conditions that the system-under-study will

be operating under. The quality of the workload used in

the simulation is important for the accuracy and

completeness of the simulation results [13, 14]. MPEG4 is

an important and demanding multimedia application. In

our simulation, we use cache (D1, I1, and CL2) hit ratios

to model the system.

Different combinations of D1, I1, and CL2 sizes

are used. Simulation results indicate that about 33%

references are data (D1) and 67% references are

instructions (I1) as shown in Table 1.

Table 1: Level-1 Data and Instruction references

Ch.

Sizes

D1 Refs (K)

Total Miss

I1 Refs (K)

Total Miss

CL1 Refs

D1% I1%

1* 18,782 521 38,758 512 33 67

2** 18,782 430 38,758 106 33 67

3*** 18,782 403 38,758 39 33 67

1* D1+I1/CL2 – 8+8/128 K, Line Size – 16 B

2** D1+I1/CL2 – 16+16/512 K, Line Size – 32 B

3*** D1+I1/CL2 – 32+32/2048 K, Line Size – 64 B

We calculate hit rates for D1, I1, and CL2 with

various combinations of CL1 and CL2 sizes as

summarized in Table 2. Line size and associativity is

fixed at 16 B and 4-way, respectively. Hit rates increase

with the increase of cache sizes.

Table 2: D1, I1, and CL2 hit ratios

Cache Sizes

D1+I1/L2 (KB)

Line

Size

CL1 Hits

D1 (%) I1 (%)

CL2

Hits (%)

8+8/128 16 B 95.0 98.0 99.3

16+16/512 32 B 96.4 98.6 99.9

32+32/2048 64 B 98.0 99.5 100.0

Table 3 shows the total amount of reads and

writes of the data references. About 67% references are

reads and 33% references are writes.

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

Table 3: Read and Write references 5.5 Performance Metrics

CL2 Size

(KB)

D1 References

Read (K) Write (K)

D1 References

R (%) W (%)

32 12,391 6,391 67 33

128 12,391 6,391 67 33

512 12,391 6,391 67 33

2048 12,391 6,391 67 33

Using VisualSim, we measure the following two

performance metrics – utilization and transactions.

Utilization: The CPU utilization is defined as

the ratio of the time that CPU spent computing to the time

that CPU spent transferring bits and performing un-tarring

and tarring functions [12].

The numbers presented in Tables 1 – 3 are

collected from Cachegrind and are used in the VisualSim

simulation model.

Transactions: Total number of transactions

processed is the total number of tasks performed (entered

and existed) by a component during the simulation [12].

5.3 Input Parameters
6. Results and Discussion

Cache sizes, line size, associativity, and levels of

caches are varied as input to the VisualSim simulation

model. System parameters are shown in Table 4.

In this research work, we use Cachegrind and

VisualSim tools to investigate the impacts of various

cache design parameters on the performance of MPEG4

decoding algorithm. Using Cachegrind, we obtain miss

rates for D1+I1 cache sizes from 8+8 to 32+32 KB by a

factor of 2, CL2 size from 32 to 4096 KB by a factor of 2,

line size 16 to 256 B by a factor of 2, and associativity

from 2-way to 16-way by a factor of 2. In this Section, we

discuss the effects of level-1 cache sizes, line size, and

associativity variation on miss rates. We, also, present the

influence of the presence of a level-2 cache on utilization

and total transactions.

Table 4: System parameters

Item Value

CL1 Cache sizes 8+8 to 32+32 KB

CL2 Cache sizes 32 to 4096 KB

Line size 16 to 256 B

Associativity 2-way to 16-way

Cache levels L1 and L2

Simulation time 2000.0 simulation time units

Task time 1.0 simulation time units

Task rate Task time * 0.4

CPU time Task time * 0.4

MEM time Task time * 0.6

Bus time MEM time * 0.4

CL1 Cache time MEM time * 0.2

CL2 Cache time MEM time * 0.4

Main memory time Task time

Bus queue length 300

6.1 Cache Size

Using Cachegrind, we change D1+I1 (CL1) from

8+8 KB to 64+64 KB by a factor of 2. We keep CL2

fixed at 1024 KB, line size 16 B, and 4-way associativity.

The miss rates due to the variation of CL1 size are shown

in Figure 5. It is noticed that the miss rates remain almost

unchanged and using a CL1 size greater than 8+8 KB

does not offer any benefit.

5.4 Assumptions
Miss Ratio Vs Level-1 Cache Sizes

[CL2 = 1024 K, Line Size 16 B, and 4-way associativity]

0

2

4

6

8+8 16+16 32+32 64+64

CL1 (D1+I1) Sizes (KB)

M
is

s
R

at
io

 (
%

)

D1

I1

L2

The following assumptions are made for the

VisualSim simulation model.

1. The dedicated bus that connects CL1 and CL2

introduces negligible delay compared to the

delay introduced by the system bus which

connects CL2 and main memory.

2. Write-back update policy is implemented.

According to this policy the CPU is released

immediately after CL1 is updated.

3. Task time has been divided among CPU, main

memory, bus, level-1 and level-2 cache

proportionally [12].

Figure 5: Miss Ratio versus CL1 Size

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

Secondly, we keep CL1 fixed at 8+8 KB, line

size 16 B, and 4-way associativity. The miss rates due to

the variation of CL2 size is shown in Figure 6.

Miss Ratio Vs Level-2 Cache Size

[D1 = 8K, I1= 8K, Line size 16 B, and 4-way associativity]

0

2

4

6

32 64 128 256 512 1024 2048 4096

CL2 Size (KB)

M
is

s
R

a
ti

o
(%

)

D1

I1

L2

Figure 6: Miss Ratio versus CL2 Size

It is observed that for CL2 size from 32 to 512

KB the miss rates decrease slowly, from 512 KB to 2 MB

the miss rates decrease sharply, and from 2 to 4 MB the

miss rates remain almost unchanged. From cost, space,

and complexity standpoints, larger CL2 may provide no

significant benefit.

6.2 Line Size

For some applications, up to a certain point,

increasing the line size may improve cache hit rates and

performance as shown in Figure 7.

Miss Ratio Vs Cache Line Size

[D1 = 8K, I1 = 8K, CL2 = 1024K, and 4-way associativity]

0

1

2

3

4

5

16 32 64 128 256

Cache Line Size (B)

M
is

s
R

at
io

 (
%

)

D1

I1

L2

Figure 7: Miss Ratio versus Line Size

Using Cachegrind, we collect the miss rates for

different line sizes while level-1 cache (D1+I1) size is

fixed at 8+8 KB, level-2 cache size is fixed at 1024 KB,

and associativity at 4-way. For a small cache like D1,

miss rates start decreasing (in other words, hit rates start

increasing) with the increase of line sizes. After a certain

point, termed as cache pollution point, miss rates start

increasing. For line size between 16 and 64 B, larger line

size provides better spatial locality. For line size 128 B or

higher, it requires more data to be read and written (in

case of a miss).

6.3 Associativity

Using Cachegrind, we collect miss rates by

varying associativity for D1+I1 cache sizes 16+16 KB,

CL2 size 1024 KB, and line size 32 B. The miss rates for

different associativity are shown in Figure 8.

The miss rates significantly decrease when we go

from 2-way to 4-way associativity. Going to 8-way or

higher, the changes are not significant.

Miss Ratio Vs Associativity

[D1= 8K, I1= 8K, CL2 = 1024K, and Line size 16 B]

0

1

2

3

4

2-way 4-way 8-way 16-way

Associativity (N-way)

M
is

s
R

at
io

 (
%

)

D1

I1

L2

Figure 8: Miss Ratio versus Associativity

6.4 Cache Levels

Using VisualSim, we investigate the impact of

the presence of a level-2 cache. CL2 size is varied and

performance metrics, namely CPU utilization and total

number of transaction, are collected. We keep D1+I1

sizes fixed at 8+8 KB, line size at 32 B, and associativity

at 4-way. We change CL2 size from 32 KB to 4 MB.

Total simulation time is 2000.0 and queue length is 300.

Table 5 shows transactions through different

components. Memory requests are initiated by the CPU

and are referred to D1 and I1; if not satisfied, be referred

to CL2; finally, unsuccessful requests are satisfied from

the main memory (MM).

Table 5: Total transactions for different CL2 sizes

32K 128K 256K 512K 1M 2M

CPU 10K 10K 10K 10K 10K 10K

CL1 10K 10K 10K 10K 10K 10K

CL2 303 303 303 303 303 303

Bus 3 3 2 2 1 0

MM 3 3 2 2 1 0

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

MM transactions decrease with the increase of

CL2 size. For a total of 10,000 tasks, 3,333 are data and

6,667 are instructions. All tasks are initiated at CPU and

referred to CL1 (D1+I1). For D1 hit ratio 5.0% and I1 hit

ratio 2.0%, 168 + 135 = 303 task requests go to CL2. For

CL2 size 32 KB (miss ratio is 0.9%), only 3 requests go to

MM via the shared bus. For CL2 size 2 MB and higher

(miss ratio is 0%), no requests go to main memory.

Figure 9 shows the impact of CL2 size variation

on CPU utilization (without and with CL1). CPU

utilization decreases with the increase of CL2 size.

Between CL2 sizes 512 KB and 2 MB, this decrement is

significant. For CL2 size 128 KB or smaller and 4 MB or

bigger this change is not significant.

CPU Utilization Vs CL2 Size (without and with CL2)

[D1 = 8K, I1 = 8K, Line size 16 B, and 4-way associativity]

0

20

40

60

32 64 12
8

25
6

51
2

10
24

20
48

40
96

CL2 Size (KB)

C
P

U
 U

ti
li
za

ti
o

n
(%

)

CL1 Only

CL1 and CL2

Figure 9: CPU Utilization versus CL2 Size

7. Conclusion

In this paper, we focus on enhancing MPEG4

decoding performance through cache optimization of a

mobile device. We use Cachegrind and VisualSim

simulation tools to optimize cache sizes, line size,

associativity, and levels of caches for the system. The

architecture we simulate includes a DSP to run the

decoding algorithm and a two-level cache system. We

collect total number of references and miss rates for D1,

I1, and CL2 using Cachegrind to drive the VisualSim

simulation model.

Techniques like selective caching, cache locking,

scratch memory, and data reordering should improve the

system performance, something that we will investigate in

the future.

8. References

[1] A. Asaduzzaman and I. Mahgoub, “Evaluation of

Application-Specific Multiprocessor Mobile

System”, Proceedings of the 2004 Symposium on

Performance Evaluation of Computer
Telecommunication Systems, pp. 751-758, San Jose,

CA, July 2004.

[2] W. Stallings, “Computer Organization &

Architecture Designing For Performance”, Prentice

Hall, Upper Saddle River, NJ, 6th edition, 2003

[3] A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana,

J.T.J. van Eijndhoven, and B. Mesman, “Data Cache

Optimization in Multimedia Applications”,

Proceedings of the 14th Annual Workshop on
Circuits, Systems and Signal Processing, ProRISC

2003, pp. 529-532, Veldhoven, The Netherlands,

November 2003

[4] P. Soderquist and M. Leeser, “Optimizing the Data

Cache Performance of a Software MPEG-2 Video

Decoder”, ACM Multimedia 97 – Electronic

Proceedings, Seattle, WA, Nov. 1997

[5] N.T. Slingerland and A.J. Smith, “Cache

Performance for Multimedia Applications”

portal.acm.org/ft_gateway.cfm?id=377833&type=pdf

[6] C. Kulkarni, F. Catthoor, H. DeMan, “Hardware

cache optimization for parallel multimedia

applications”, Proceedings of the 4th International

Euro-Par Conference on Parallel Processing table of
contents, pp. 923 – 932, 1998

[7] N.T. Slingerland and A.J. Smith, “Design and

characterization of the Berkeley multimedia

workload”, Multimedia Systems, pp. 315-327,

Springer-Verlag 2002

[8] F. Vahid and T. Givargis, “Embedded System Design

– A Unified Hardware/Software Introduction”, John

Wiley & Sons, New York, NY, 2002

[9] R. Schaphorst, “Videoconferencing and

Videotelephony – Techonology and Standards”,

Artech House, Norwood, MA, 2nd edition, 1999

[10] S.R. Ely, "MPEG video coding - A simple

introduction", EBU Technical Review Winter 1995

[11] Cachegrind - a cache profiler: Valgrind

http://valgrind.kde.org/index.html

[12] VisualSim – system-level simulator: Mirabilis

Design, Inc.

http://www.mirabilisdesign.com/

[13] A. Maxiaguine, S. Kunzli, and L. Thiele, "Workload

Characterization Model for Tasks with Variable

Execution Demand", Project supported in part by

KTI/CTI, Computer Engineering and Networks

Laboratory, Swiss Federal Institute of Technology

(ETH) Zurich, Switzerland

[14] A. Avritzer, J. Kondek, D. Liu, and E.J. Weyuker,

"Software Performance Testing Based on Workload

Characterization", WOSP '02, July 24-26, 2002

Rome, Italy, AT&T Labs, ACM ISBN 1-1-58113-

563-7 02/07, 2002

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

Appendix A: VisualSim Block Diagram and Simulation Cockpit
Simulation tool used is VisualSim from Mirabilis Design, Inc. [http://www.mirabilisdesign.com/].

Figure A. VisualSim Block Diagram. The system to be evaluated can be described in three parts – Architecture, Behavior,

and Workload. Architecture: Elements such as CPU, cache (CL1/CL2), bus, and main memory are specified here. Behavior:

This describes the actions performed on the system. Examples include network traffic shaping. Workload: Transactions that

traverse the system such as network traffic. Mapping between behavior and architecture is performed using Virtual

Execution. Connection can be dedicated or Virtual. The virtual execution capability makes re-mapping from hardware to

software by just changing a parameter. The output of a block can be displayed or plotted [Figure B].

Figure B. VisualSim Simulation Cockpit (partial). The Simulation Cockpit provides functionalities (left-top) to run the

model (block diagram) and to collect simulation results (right-top). Parameters can be changed before running the simulation

without modifying the block diagram. The final results can be saved into a file and/or printed for further analysis.

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04)

0-7695-2217-3/04 $20.00 © 2004 IEEE

